
Galica
Creative template

Verification of OS-level
Cache Management

Renato Mancuso

Sagar Chaki

OSPERT 2018

Goal + Approach

Colored Lockdown
for deterministic cache management

via CBMC

C source code

Linux Kernel
Module

Background
Colored Lockdown

Last Level Cache
Management Model

Sets

Ways
✔ Addresses all the sources of interference

✔ Converts the LLC cache in a deterministic object

at the granularity of a single memory page

✔ Allows the use of legacy code

✔ Provides flexibility in cache assignment

Profile Remap Allocate

Background
Colored Lockdown

Last Level Cache
Management Model

Sets

Ways
✔ Addresses all the sources of interference

✔ Converts the LLC cache in a deterministic object

at the granularity of a single memory page

✔ Allows the use of legacy code

✔ Provides flexibility in cache assignment

Profile Remap Allocate

100%misses
on non-allocated pages

100%hits
on allocated pages

Profile-Driven

Caches are critical,
constrained resources.
Optimal allocation ?

PROBLEM

Process Address Space

data

text

heap
…

Location of hot
region(s) is unknown

Absolute virtual
memory addresses
may change

Hot+ -

?

?

Cache Allocation

Profile-Driven

Extract memory traces
and produce memory
usage profile.

PROFILE MEMORY

Caches are critical,
constrained resources.
Optimal allocation ?

PROBLEM

Process Address Space

data

text

heap
…

Location of hot
region(s) is unknown

Absolute virtual
memory addresses
may change

Hot+ -

?

?

Process Address Space

trace

Page Accesses

A 100 K
B 10 K
C 1 K
D 700
E 500

F 90

C 50

D 10
E 5

threshold

𝜇
residual

cache misses

Application Profile

Cache Allocation

COLORING

Sets

Ways • Leverages on the virtual→ physical translation layer

• Used to move page mapping across sets (up/down)

• Transparent to the application

LOCKDOWN

Sets

Ways

COLORING

Sets

Ways • Leverages on the virtual→ physical translation layer

• Used to move page mapping across sets (up/down)

• Transparent to the application

LOCKDOWN

Sets

Ways • Uses architecture-specific lockdown features

• Used to allocate pages on selected ways (left/right)

• Once allocated, pages trigger cache hits until deallocation

offline

online

Task tracing +
analysis

Profile
generation

offline

online

Task tracing +
analysis

Profile
generation

Profile load

Task cleanup

Color detection +
re-assignment

Cache lockingoffline

online

✔

✔

Task tracing +
analysis

Profile
generation

Profile load

Task cleanup

Color detection +
re-assignment

Cache locking

If cache is large enough, allocation is performed

offline

online

1

2
3

4 VERIFIED PROPERTIES
✔

✔

Task tracing +
analysis

Profile
generation

Profile load

Task cleanup

Color detection +
re-assignment

Cache locking

If cache is large enough, allocation is performed

If allocation is performed, corresponding physical
addresses locked in cache

offline

online

1

2
3

4 VERIFIED PROPERTIES
✔

✔

Task tracing +
analysis

Profile
generation

Profile load

Task cleanup

Color detection +
re-assignment

Cache locking

If cache is large enough, allocation is performed

If allocation is performed, corresponding physical
addresses locked in cache

offline

online

1

2
3

4 VERIFIED PROPERTIES

No extra memory locked in cache

✔

✔

Task tracing +
analysis

Profile
generation

Profile load

Task cleanup

Color detection +
re-assignment

Cache locking

If cache is large enough, allocation is performed

If allocation is performed, corresponding physical
addresses locked in cache

All temporary kernel resources
released at the end

offline

online

1

2
3

4 VERIFIED PROPERTIES

No extra memory locked in cache

✔

✔

what was
Verified

what was
Assumed1

2

3

4

If cache is large enough, allocation is
performed

If allocation is performed,
corresponding physical addresses
locked in cache

All temporary kernel resources
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

what was
Verified

what was
Assumed1

2

3

4

If cache is large enough, allocation is
performed

If allocation is performed,
corresponding physical addresses
locked in cache

All temporary kernel resources
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

Profile is correct2

what was
Verified

what was
Assumed1

2

3

4

If cache is large enough, allocation is
performed

If allocation is performed,
corresponding physical addresses
locked in cache

All temporary kernel resources
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

Profile is correct2

Kernel descriptors correct3

what was
Verified

what was
Assumed1

2

3

4

If cache is large enough, allocation is
performed

If allocation is performed,
corresponding physical addresses
locked in cache

All temporary kernel resources
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

Profile is correct2

Kernel descriptors correct3

Kernel routines correct4

what was
Verified

what was
Assumed1

2

3

4

If cache is large enough, allocation is
performed

If allocation is performed,
corresponding physical addresses
locked in cache

All temporary kernel resources
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

Profile is correct2

Kernel descriptors correct3

Kernel routines correct4

Initial status of lockdown bit is known5

Verified

Logic

Verification
Boundaries

Verified

Logic

Template
Generic
Profile

Verification
Boundaries

Verified

Logic

Template
Generic
Profile

Hardware

Verification
Boundaries

Abstract
cache
model

Instantiate
memory
model

R
es

t
o

f K
er

ne
l

Abstract &
replace
routines

Initialize
descriptors

Verified

Logic

Template
Generic
Profile

Hardware

Verification
Boundaries

Abstract
cache
model

Instantiate
memory
model

Cache Model
& Locking

Set Associative Cache

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Set Associative Cache

typedef cache_line_t cache_set_t [CACHE_ASSOC];

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Set Associative Cache

typedef cache_set_t cache_t [CACHE_NSETS];

typedef cache_line_t cache_set_t [CACHE_ASSOC];

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Sets

Ways

Set Associative Cache

typedef cache_set_t cache_t [CACHE_NSETS];

typedef cache_line_t cache_set_t [CACHE_ASSOC];

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Sets

Ways

Set Associative Cache
memory address

typedef cache_set_t cache_t [CACHE_NSETS];

typedef cache_line_t cache_set_t [CACHE_ASSOC];

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Sets

Ways

Set Associative Cache
memory address lock bit

DCBTLS in HW
Data Cache Block Touch & Lock Set

typedef cache_set_t cache_t [CACHE_NSETS];

typedef cache_line_t cache_set_t [CACHE_ASSOC];

typedef struct {
void * addr;
char locked;

} cache_line_t;

Cache Model
& Locking

Sets

Ways

Set Associative Cache
memory address lock bit

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

struct page * page_ptr;

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(nr_pages == 1);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(write == 0);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(force == 0);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(tsk == current);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(mm == tsk->mm);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

page_ptr = __CPROVER_ui_void_ptr(...);

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force
__CPROVER_assume(page_ptr >= mem_map &&

page_ptr < (mem_map + MAX_PAGES));

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

__CPROVER_assume(ALIGNED_TO(page_ptr,
sizeof(struct page)));

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

*pages = page_ptr;

{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

return 1;

Evaluation
Memory Instance #1

From cache controller’s perspective

Tag (23) Index (3) Offset (6)

Page Frame Number (24) Offset (8)

From OS’s perspective

Color (1)

Evaluation

Memory Instance #2

Memory Instance #1

From cache controller’s perspective

Tag (23) Index (3) Offset (6)

Page Frame Number (24) Offset (8)

From OS’s perspective

Color (1)

From cache controller’s perspective

Tag (16) Index (10) Offset (6)

Page Frame Number (20) Offset (12)

From OS’s perspective

Color (4)

Colored Lockdown

via CBMC

Summary

Hardware

U
se

r-S
p

ace

Kernel

Colored Lockdown

via CBMC

Summary

Hardware

U
se

r-S
p

ace

Kernel

Colored Lockdown

via CBMC

Summary

Hardware

U
se

r-S
p

ace

Kernel

Thanks.
rmancuso@bu.edu

