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Goal + Approach

Colored Lockdown
for deterministic cache management

via CBMC

C source code

Linux Kernel 
Module
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✔ Allows the use of legacy code
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Extract memory traces 
and produce memory 
usage profile.
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COLORING

Sets

Ways • Leverages on the virtual→ physical translation layer

• Used to move page mapping across sets (up/down)

• Transparent to the application

LOCKDOWN

Sets

Ways • Uses architecture-specific lockdown features

• Used to allocate pages on selected ways (left/right)

• Once allocated, pages trigger cache hits until deallocation
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If cache is large enough, allocation is 
performed

If allocation is performed, 
corresponding physical addresses 
locked in cache

All temporary kernel resources 
released at the end

No extra memory locked in cache

After locking issued, line is in cache1

Profile is correct2

Kernel descriptors correct3

Kernel routines correct4

Initial status of lockdown bit is known5
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DCBTLS in HW
Data Cache Block Touch & Lock Set
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int write, int force



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

struct page * page_ptr;



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(nr_pages == 1);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(write == 0);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(force == 0);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(tsk == current);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

assert(mm == tsk->mm);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

page_ptr = __CPROVER_ui_void_ptr(...);



{

}

Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force
__CPROVER_assume(page_ptr >= mem_map &&

page_ptr < (mem_map + MAX_PAGES));
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get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

__CPROVER_assume(ALIGNED_TO(page_ptr, 
sizeof(struct page)));
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Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

*pages = page_ptr;
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Abstraction of
Kernel Routine

get_user_pages(...)
used to pin physical pages, returns page 
descriptors from virtual addresses

main parameters
(as of kernel 3.0-rc7)

struct task_struck * tsk

struct mm_struct * mm

unsigned long start

struct page ** pages

unsigned long nr_pages

int write, int force

return 1;
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